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Particle Size and Content Uniformity
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The requirements of the USP Content Uniformity test are translated into physical and mathematical
parameters. Assuming spherical particle sizes with a log normal distribution, the mean particle size
and particle size distribution required to insure a high probability of passing the content uniformity test
are calculated. On the basis of these calculations it is shown that satisfactory tablets of low doses
cannot be manufactured from a drug that does not meet certain particle size distribution specifications.
It is recommended that particle size specifications for low dose drugs include a requirement for a limit

to size distribution.
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INTRODUCTION

If a low-dose (<100-pg) drug is to be formulated as a
tablet, it is critical that the drug be uniformly distributed
among the tablets. This problem must be faced more fre-
quently as more potent drugs are developed. The following is
an attempt to calculate the minimum number of particles and
the maximum mean particle size required to ensure a 99%
probability of passing the USP Content Uniformity test.

CALCULATIONS AND DISCUSSION

The USP Content Uniformity test (5) is intended to en-
sure that the active ingredient is distributed uniformly among
the individual units of a batch. The monograph for tablets
states,

Where a Content Uniformity test is required, se-
lect a sample of 30 . . . tablets. . . . Assay 10 of these
individually as directed in the Assay in the mono-
graph, unless otherwise directed under Content Uni-
formity. . . .

The requirements are met if the content of each of
the 10 tablets is within the limits of 85.0 percent and
115.0 percent of the average of the limits specified in
the potency definition in the individual monograph.

If the content of not more than 1 tablet falls out-
side the limits of 85.0 percent and 115.0 percent and if
the content of none of the tablets falls outside the lim-
its of 75.0 percent and 125.0 percent of that average,
assay each of the remaining 20 tablets. The require-
ments are met if the content of each of the additional
20 tablets falls within the limits of 85.0 percent and
115.0 percent of the average of the limits specified in
the potency definition in the individual monograph,
unless otherwise stated in the individual monograph.

From the binomial distribution, for a random sample of 30
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tablets, the probability P of passing the Content Uniformity
test is

P = PI° + (10PJP)P?° = PI%1 + 10P,P}) (1)

where P, is the probability of a tablet being between 85 and
115% of the mean potency and P, is the probability of a
tablet falling outside of this range but between 75 and 125%
of the mean.

P, = Prob(0.85 < x < 1.15) 2)
and
P, = Prob(0.75 <x < 1.25) — P, 3)
The value of x in Eqgs. (2) and (3) is given by

T .

x = T, (
where T is the total weight of drug in a tablet and T, is the
label potency. If the mean value of T is T, then

E(x) =1 &)

where E(x) represents the population mean of x.

For any given probability P of passing the Content Uni-
formity test (e.g., P = 0.99) Egs. (3)—(5) can be solved for
the value of P corresponding to a given variance of x if the
probability distribution of x is known.

Because of the large number of particles involved, we
assume that x follows a normal distribution with a mean of
unity and a variance of var, i.e.,

fix) = N(1,var) (6)

Using International Mathematical Society Library subrou-
tines, Eqs. (1) through (5) can be solved to find var for any
given value of P, the probability of passing the content uni-
formity test. Table I shows the maximum variance associ-
ated with several probabilities.

P can be calculated, given the variance. For example,
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Table I. Maximum Variance Associated with Various Probabilities

P a, (var)
0.9 4.437 E-3
0.95 3.889 E-3
0.99 3.064 E-3
0.999 2.370 E-3

with variance 4.437 E-3, P, = 0.976 and P, =~ 0.024 [from
Eqgs. (2) and (3)]. Substituting these values into Eq. (1) re-
sults in P = 0.9. Figure 1 shows a plot of P vs var which can
be used to estimate P for a given value of var (or vice versa).
The variances in Table I can be related to the distribu-
tion of particle size for the active ingredient and to the dis-
tribution of the particles among the tablets. In order to do
this, two assumptions were made.

(1) The particle diameters are distributed according to a
log normal distribution having a coefficient of vari-
ation of C (fraction).

(2) The number of particles per tablet is governed by a
Poisson distribution, with the mean number of par-
ticles per tablet equal to 6.

From these conditions it can be shown (see Appendix)

that the variance of x, Var (x), is

a+ ¢y

Var (x) = P

@)
In order to meet any of the probabilities of Table I, the
variance of x mut be less than or equal to the value of var
given in the table, i.c.,

Var(x) < var )]
and thus
1+ C%»
0= S___) )
var

The solution to Egs. (1)-(3) (examples of which are given in
Table I) can be combined with Eq. (9) so that any probability
of passing the USP Content Uniformity test can be related to

1.0
)
D
Eq
P
= 0.9
m
<
[2=]
o
&
[a ¥

0.8

"2 3 4 5
VAR X 1000

Fig. 1. Plot of the probability of passing the content uniformity test
as a function of the variance of (total drug in tablet/label potency).
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0, the mean number of particles per tablet, and C, the co-
efficient of variation of particle diameters. Table II gives
minimum values of © required for a 99% probability of pass-
ing the content uniformity test for particle distributions hav-
ing 0% < C < 200%.

Analysis of moments indicates that there is considerable
departure from the assumed normal distribution for C =
50%. Since the error introduced by this deviation is to un-
derestimate @, we can still regard the calculated values as
meaningful and as indicating that at least that number of
particles is required.

The maximum mean particle diameter m associated with
any value of ® will depend upon the dose, the particle den-
sity, and the particle geometry. To facilitate the calculations
we assume spherical particles of unit density. The specified
dose on micrograms is then equal to the total particle vol-
ume, V, in thousandths of microliters. The mean particle
volume v, that is required is

Vo
Vreq = 6 (10)
The assumptions made in this treatment tend to underesti-
mate the number of particles required. They therefore over-
estimate the required particle size so that the estimates ob-
tained are truly maximum acceptable mean particle sizes.
Analysis of Eq. (1) shows that small variations in P,
result in large changes in P; also, in any actual (as contrasted
with theoretical) distribution the values of P, and P, cannot
be determined with a high precision. Therefore, the present
solution represents an approximation under certain assumed
theoretical conditions.
The total volume of drug required to give dose T, (ng) is

V,=T/D =10°T, (units um®) an
where density is assumed to be D = g/cm?.
Equating the mean total volume to V,
Ov, =V, (12)

and for a given mean particle volume, the mean number of
particles is

(13)

In the analysis, the distribution of X = 7/T, has been ap-
proximated by a normal distribution with mean = 1 and
variance (1 + C?)9/0. It can be shown that, as ® — o, the
distribution of the standardized variable

x - 1)\/6
(1 + C2)9/2

0 = Vv,

(14)

converges to the normal distribution N(0, 1). Convergence to
the normal will be slow for large C. Moreover, ® cannot be
increased without limit but is determined by Eq. (13). Cal-
culations of the standardized third and fourth moments of
the X distribution (2) for C > 0.5 and © at its lower limit
show that, in this situation, the distribution is quite nonnor-
mal. However, the results obtained with the normality as-
sumption are still useful approximations and Eq. (9) appears
to give a limit to ® which is less than would occur with the
actual distribution.
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Table II. Maximum Mean Particle Diameter (um) and Associated Coefficient of Variation Which Assures a 99% Probability of Passing the
USP Content Uniformity Test

Dose
Particle diameter
coefficient of Minimum mean number 0.1 pg 1pg 10pg 100 pg 1 mg 10 mg
variation, C (%) of particles, 6 Maximum mean diameter (pum)
0 3.27 X 10? 8.36 18.0 38.8 83.6 180.0 388.0
20 4.64 x 10? 7.15 15.4 332 71.5 154.0 332.0
40 1.24 x 10° 4.62 9.95 21.4 46.2 99.5 214.0
60 5.19 x 10° 2.44 5.27 11.3 24.4 52.7 113.0
80 2.80 x 10* 1.16 2.49 5.37 11.6 24.9 53.7
100 1.67 x 10° 0.523 1.13 2.43 5.23 11.3 24.3
120 1.00 x 10°¢ 0.236 0.508 1.10 2.36 5.08 11.0
140 5.69 x 10¢ 0.109 0.235 0.506 1.09 2.35 5.06
160 3.00 x 107 0.0521 0.112 0.242 0.521 1.12 2.42
180 1.45 x 108 0.0259 0.0558 0.120 0.259 0.558 1.20
200 6.37 x 108 0.0134 0.0288 0.0621 0.134 0.288 0.621

The distribution problem has been studied in more detail
but only the essential results are reported here.

Since we have assumed a log normal distribution of
spherical particle diameters, the mean particle volume V,, in
terms of the mean particle diameter m and the coefficient of
variation C, is

I
Vp=<¢ mi(1 + CH} (15)
The mean required particle diameter can be calculated by
equating the actual particle volume with the required particle
volume, i.e., V, = V. This gives (see Appendix)

m < (6 var/l"s (1 + C»)~*V, "

= 102 (6 var/ID'» (1 + CH*T,»  (16)

m represents an upper limit for mean particle diameter for a
given C and T.

It is clear from Eq. (15) that the maximum value of m
increases with the cube root of the dose if C is held constant.
The calculated maximum mean particle diameters for doses
of 0.1, 1, 10, and 100 pg and 1 and 10 mg are given in Table
IL. 1t is clear from the tables that m is highly dependent on
both the dose and the uniformity of the particle sizes.

By rearranging Table II we can calculate the minimum
tablet dose that can be manufactured from a powder whose
mean particle size and coefficient of variation are known.
This is done in Table III for various combinations of these
parameters. An illustration of the calculation follows.

From Eq. (16),

I m?
e LM 212
T, = 10 6Var(1+c)
From Table I, var = 3.064 x 10 3 for P = 0.99, m =
cmy,and C =1,

1073

1 107?

To= € 3064 x 103

<212 =700 x 1076 ¢

It is apparent from the tables that the mean particle size
alone does not always provide enough information to deter-
mine the acceptability of a lot of bulk drug. For the manu-
facture of low-dose tablets it is necessary to ensure a rela-
tively uniform size distribution as well as a mean particle
size.

The most effective means of reducing the particle size of
powders is micronization. Unfortunately micronization is

Table I1I. Minimum Average Dose as a Function of Mean Particle Diameter and Coefficient of Variation Which Assures a 99% Probability
of Passing the USP Content Uniformity Test

Mean particle diameter (pm)

CV (%) 1 2 5 10 20 50 100
0 0.17 ng 1.4 ng 21.0 ng 170.0 ng 1.4 pg 21.0 pg 170.0 pg
20 0.27 ng 2.2 ng 34.0 ng 270.0 ng 2.2 pg 34.0 pg 270.0 pg
40 1.0 ng 8.1 ng 130.0 ng 1.0 pg 8.1 pg 130.0 pg 1.0 mg
60 6.8 ng 55.0 ng 860.0 ng 6.8 pg 55.0 pg 860.0 pg 6.8 mg
80 65.0 ng 520.0 ng 8.1 pg 65.0 pg 520.0 pg 8.1 mg 65.0 mg
100 700.0 ng 5.6 pg 87.0 pg 700.0 pg 5.6 mg 87.0 mg 700.0 mg
120 7.6 pg 61.0 pg 950.0 pg 7.6 mg 61.0 mg 950.0 mg 76¢g
140 77.0 pg 620.0 pg 9.7 mg 77.0 mg 620.0 mg 97¢g 77.0¢g
160 710.0 pg 5.7 mg 89.0 mg 710.0 mg 57¢g 89.0 g 7100 g
180 8 mg 46.0 mg 720.0 mg 58¢g 46.0 g 720.0 g 5.8kg
200 42.0 mg 300.0 mg 52¢g 420¢g 3300¢g 5.2 kg 42.0kg
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not suitable for all drugs. The frictional heat produced in
micronizing can cause some drugs to soften or melt and then
agglomerate. The same heat can cause thermally unstable
drugs to degrade. Even the smallest micronizer consumes up
to 50 g of drug in bringing the machine up to full speed. This
makes micronization unacceptable for drugs which are avail-
able in limited quantities.

The most common means of reducing particle size is
milling. Depending on the type of mill and the nature of the
drug, milling can produce particle sizes anywhere between
50 and 1000 pm. It is clear from Table III that unless the
particles are monodisperse, milling cannot be used for drugs
given in less than 100 pg per tablet. Realistically assuming a
relatively uniform distribution of sizes having a 50% coeffi-
cient of variation and a mean particle size of 100 pm (140
U.S. standard mesh), milling is borderline for doses below
10 mg.

It is difficult to generalize on either the mean particle
size or the particle size distribution produced by microniza-
tion. The physical properties of the powder play an ex-
tremely important role in determining the extent of its com-
munication. Frequently 5- to 20-pm particles are produced
by micronization; however, for some materials, particles as
small as 1 wm can be obtained, and for others it is not pos-
sible to produce particles below 30 pm. Some materials,
because of a low melting point or low thermal stability, can-
not be micronized at all. Size distributions of micronized
particles also vary widely, with coefficients of variation
ranging from 35 to over 200%.

If the distribution of particle sizes is uniform (CV
<50%) and if the mean particle size is below 5 pm, then
micronization can be used to produce material suitable for
incorporation into tablets with doses as low as 1 pg. In most
cases the mean particle size produced by micronization is
greater than 10 pm so that a 1-pg tablet cannot be manufac-
tured. For drugs which cannot be micronized, the minimum
dose that can be reliably produced can exceed 1 mg.

APPENDIX

Assumptions were as follows.

1. Particle diameters, d, are distributed independently
in a log-normal distribution In(p,c?) [Eq. (A1)]. Mean
particle diameter, m, and coefficient of variation, C.

2. The number » of particles in a tablet is distributed by
the Poisson distribution (Eq. (A7)}. Also, n and d are
independent.

3. For calculation of volume, particles are assumed to
be spherical.

4. Mean value of total drug per tablet, 7, is equal to
target or label, 7.

5. The distribution of the ratio or dose (weight) of drug
in individual tablets to the theory or label dose (X =
T/T,), which derives from the previous assumptions,
can be approximated by a normal distribution—at
least to give useful results.

Mathematical symbols and measurement units which were
used are defined in Table Al.

A random varijable d has a log normal distribution if In d

has a normal distribution. The log-normal density function is
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Table A1l. Symbols Used in the Appendix
Symbol Units
m pm Mean particle diameter
C — Coefficient of variation of particle diameter
distribution (fraction)
P 1 Probability of passing USP test
PP, 1 Defined in Egs. (2) and (3)
T ne Total wt of drug in tablet (random vari-
able)
T, 174 Target dose (label)
x =TT, 1 Total drug wt/target
var 1 Required variance of x to give P
var(x) 1 Variance of x
(<] 1 Mean No. of particles
v, pm? Total volume of required dose (assuming
density = 1 g/em®, V, = 10° T,)
Ve pm? Mean particle volume determined from m

and C

Ad) = LN(u,0%) = (1/V2llod) exp [—(Ind — w)*20?]
(A1)

where | is the mean and ¢” the variance of In d. The LN
distribution is analyzed in detail in Ref. 1. Some character-
istics of the LN function which are used in this derivation
can be derived from the density function, Eq. (Al):

2

1+ C*=¢" (A2)
where C is the coefficient of variation.
E(d) = m (1 + CH<&-D2 (A3)
If
y=ad® (A4)

where a and b are arbitrary constants with @ > o, then the
density of y is also LN, and

g() = LN (Ina + bp,b%c?) (AS)
so that, from Eq. (A2),
1+C =1+ (A6)
where C, is the coefficient of variation of y.
The Poisson density function is
e Oxn
pln) == (A7)
with mean
En) = 0 (A8)
and variance
Var(n) = 0 (A9)
The weight fraction of drug in a tablet is given by
x = TIT, (A10)

where T, is the target or label amount and
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T= E Wi
i—i (Al1)

is the sum of weights (w,) of the »n individual particles.

T is the sum of a random number (n) of independent
random variables (w). This type of sum is considered in the
probability literature (3,4).

For such a sum, it can be shown that

E(T) = E(n)E(w) (A12)
Var(T) = E(n) Var(w) + Var(n) [E(w)]* (A13)
By assumption 4,
ET) =T, (A14)
so that
Ex) = 1. (A15)
From Egs. (A12) and (A13),
ET) = 0 E(w) (A16)
var(T) = © [Ew)P(1+C2) (A17)
Var(x) = (1 + C2)/0 (A18)
where C,, is the coefficient of variation of w.
For spherical particles
w = D(I1/6)d’ (A19)

where D is density.

From Eq. (A6), if a variable d has a log-normal distri-
bution with CV = C, then the variable y = ad® is also
log-normal with CV = C,, such that (1 + C%) = (1 + c??,
From Eq. (A19),

w = ad’
where
DII
a=— and b=3
6
L1+ C)y=0+c» (A20)
Therefore,

Yalkowsky and Bolton

Var(x) = (1 + C2)°/0

The probability of passing the USP content uniformity test is
given by Eq. (1). If X follows the normal distribution with
given mean [E(X) = 1], then Egs. (1)~(3) can be solved nu-
merically for the maximum variance var (Table I). The min-
imum mean number of particles ® is then determined by
Eqs. (8) and (9).

Equation (16) is derived as follows:

(A21)

In
Vo= m' (1 + C»  [from Eq. (11)]
Vo
Viep = Y [from Eq. (10)]
_ Vo Var(x) . Eq. (7)]
= ———-(1 T Oy [from Eq.
< YoY% ifrom Eq. ®)]
<az oy rom Eq.
Therefore V, = V,_, gives
| 1 Vo var
—m (1 + P s 2 = 107°
cm ( ) a+ (Vo = 1077 L)
or
LS I
In
or
6 var -4
m< ___)1/3 (1 + C2 V01/3
In
where
Vo =10T, (I, = grams)
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